2025-01-21 21:47:24 -08:00

114 lines
4.0 KiB
Zig

const std = @import("std");
const print = std.debug.print;
const util = @import("util.zig");
const Point = util.Point;
const log = util.log;
const expect = std.testing.expect;
pub fn main() !void {
var gpa = std.heap.GeneralPurposeAllocator(.{}){};
defer _ = gpa.deinit();
const allocator = gpa.allocator();
const response = try partOne(false, false, allocator);
print("{}\n", .{response});
}
// Sketch of intended logic:
// * Find shortest non-cheating time start-to-finish
// * Find fastest time (don't need to save path) from start _to_ each location
// * Find faster time (ditto) from end _to_ each location
// * Find all cheats
// * For each cheat:
// * Time saved is basic time - (time-from-start-to-start-of-cheat - time-from-end-of-cheat-to-end)
//
// Implementation is not yet complete! So far I've only implemented the first bullet, because building a generic
// implementation of Dijkstra's was an _ARSE_ - the rest can happen tomorrow!
fn partOne(is_test_case: bool, debug: bool, allocator: std.mem.Allocator) !u32 {
const input_file = try util.getInputFile("20", is_test_case);
const data = try util.readAllInputWithAllocator(input_file, allocator);
defer allocator.free(data);
const map = buildMap(data, allocator);
defer allocator.free(map);
defer {
for (map) |line| {
allocator.free(line);
}
}
// Technically slightly inefficient to do it this way, as we could have done it during `buildMap`, but I prefer my
// functions to do one-and-only-one thing.
const start_point = findPoint(map, 'S');
const end_point = findPoint(map, 'E');
log("Start point is {s} and end point is {s}\n", .{ start_point, end_point }, debug);
const neighboursFunc = &struct {
pub fn func(d: *const [][]u8, point: *Point, alloc: std.mem.Allocator) []Point {
var response = std.ArrayList(Point).init(alloc);
const ns = point.neighbours(d.*[0].len, d.len, alloc);
for (ns) |n| {
if (d.*[n.y][n.x] != '#') {
response.append(n) catch unreachable;
}
}
alloc.free(ns);
return response.toOwnedSlice() catch unreachable;
}
}.func;
const shortestPathLength = util.dijkstra([][]u8, Point, &map, neighboursFunc, start_point, end_point, debug, allocator) catch unreachable;
return shortestPathLength;
}
fn buildNeighboursFunction(map: *const [][]u8) *const fn (p: *Point, alloc: std.mem.Allocator) []Point {
return struct {
pub fn call(p: *Point, alloc: std.mem.Allocator) []Point {
var responseList = std.ArrayList(Point).init(alloc);
const neighbours = p.neighbours(map[0].len, map.len, alloc);
for (neighbours) |n| {
if (map[n.y][n.x] == '.') {
responseList.append(n) catch unreachable;
}
}
alloc.free(neighbours);
return responseList.toOwnedSlice();
}
}.call;
}
fn buildMap(data: []const u8, allocator: std.mem.Allocator) [][]u8 {
var map_list = std.ArrayList([]u8).init(allocator);
var data_iterator = std.mem.splitScalar(u8, data, '\n');
while (data_iterator.next()) |data_line| {
var line = std.ArrayList(u8).init(allocator);
for (data_line) |c| {
line.append(c) catch unreachable;
}
map_list.append(line.toOwnedSlice() catch unreachable) catch unreachable;
}
return map_list.toOwnedSlice() catch unreachable;
}
fn findPoint(data: [][]u8, char: u8) Point {
for (data, 0..) |line, y| {
for (line, 0..) |c, x| {
if (c == char) {
return Point{ .x = x, .y = y };
}
}
}
unreachable;
}
test "partOne" {
var gpa = std.heap.GeneralPurposeAllocator(.{}){};
defer _ = gpa.deinit();
const allocator = gpa.allocator();
const response = try partOne(true, true, allocator);
print("{}\n", .{response});
try expect(response == 84);
}