from typing import Iterable K_FACTOR = 10 BETA = 200 def rerank(ratings: Iterable[int], winning_player_idx: int) -> Iterable[int]: expectations = _expectations(ratings) return [ rating + (K_FACTOR * ((1 if winning_player_idx == idx else 0) - expectations[idx])) for idx, rating in enumerate(ratings) ] def _expectations(ratings: Iterable[int]) -> Iterable[int]: return [ _calculate_expectation(rating, ratings[:idx] + ratings[idx + 1 :]) for idx, rating in enumerate(ratings) ] def _calculate_expectation(rating: int, other_ratings: Iterable[int]) -> int: return sum( [_pairwise_expectation(rating, other_rating) for other_rating in other_ratings] ) / (float(len(other_ratings) + 1) * len(other_ratings) / 2) def _pairwise_expectation(rating: int, other_rating: int) -> Iterable[int]: """ Gives the expected score of `rating` against `other_rating` """ diff = float(other_rating) - float(rating) f_factor = 2 * BETA # rating disparity return 1.0 / (1 + 10 ** (diff / f_factor))