edh-elo/app/elo/elo.py
2024-11-18 19:47:40 -08:00

40 lines
1.1 KiB
Python

from typing import Iterable, List
K_FACTOR = 10.0
BETA = 200
def rerank(ratings: List[float], winning_player_idxs: Iterable[int]) -> Iterable[float]:
expectations = _expectations(ratings)
return [
float(rating)
+ (
K_FACTOR
* ((1.0 if idx in winning_player_idxs else 0.0) - expectations[idx])
)
for idx, rating in enumerate(ratings)
]
def _expectations(ratings: List[float]) -> List[float]:
return [
_calculate_expectation(rating, ratings[:idx] + ratings[idx + 1 :])
for idx, rating in enumerate(ratings)
]
def _calculate_expectation(rating: float, other_ratings: List[float]) -> float:
return sum(
[_pairwise_expectation(rating, other_rating) for other_rating in other_ratings]
) / (float(len(other_ratings) + 1) * len(other_ratings) / 2)
def _pairwise_expectation(rating: float, other_rating: float) -> float:
"""
Gives the expected score of `rating` against `other_rating`
"""
diff = float(other_rating) - float(rating)
f_factor = 2 * BETA # rating disparity
ret_val = 1.0 / (1 + 10 ** (diff / f_factor))
return ret_val